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ABSTRACT

The growing availability of digital topographic data and the increased reliability of precipitation forecasts invite modelling
efforts to predict the timing and location of shallow landslides in hilly and mountainous areas in order to reduce risk to an
ever-expanding human population. Here, we exploit a rare data set to develop and test such a model. In a 1·7 km2 catchment
a near-annual aerial photographic coverage records just three single storm events over a 45 year period that produced
multiple landslides. Such data enable us to test model performance by running the entire rainfall time series and determine
whether just those three storms are correctly detected. To do this, we link a dynamic and spatially distributed shallow
subsurface runoff model (similar to TOPMODEL) to an infinite slope model to predict the spatial distribution of shallow
landsliding. The spatial distribution of soil depth, a strong control on local landsliding, is predicted from a process-based
model. Because of its common availability, daily rainfall data were used to drive the model. Topographic data were derived
from digitized 1 : 24 000 US Geological Survey contour maps. Analysis of the landslides shows that 97 occurred in 1955,
37 in 1982 and five in 1998, although the heaviest rainfall was in 1982. Furthermore, intensity–duration analysis of available
daily and hourly rainfall from the closest raingauges does not discriminate those three storms from others that did not
generate failures. We explore the question of whether a mechanistic modelling approach is better able to identify landslide-
producing storms. Landslide and soil production parameters were fixed from studies elsewhere. Four hydrologic parameters
characterizing the saturated hydraulic conductivity of the soil and underlying bedrock and its decline with depth were first
calibrated on the 1955 landslide record. Success was characterized as the most number of actual landslides predicted with
the least amount of total area predicted to be unstable. Because landslide area was consistently overpredicted, a threshold
catchment area of predicted slope instability was used to define whether a rainstorm was a significant landslide producer.
Many combinations of the four hydrological parameters performed equally well for the 1955 event, but only one combination
successfully identified the 1982 storm as the only landslide-producing storm during the period 1980–86. Application of this
parameter combination to the entire 45 year record successfully identified the three events, but also predicted that two other
landslide-producing events should have occurred. This performance is significantly better than the empirical intensity–
duration threshold approach, but requires considerable calibration effort. Overprediction of instability, both for storms that
produced landslides and for non-producing storms, appears to arise from at least four causes: (1) coarse rainfall data time
scale and inability to document short rainfall bursts and predict pressure wave response; (2) absence of local rainfall data;
(3) legacy effect of previous landslides; and (4) inaccurate topographic and soil property data. Greater resolution of spatial
and rainfall data, as well as topographic data, coupled with systematic documentation of landslides to create time series to
test models, should lead to significant improvements in shallow landslides forecasting. Copyright © 2003 John Wiley &
Sons, Ltd.
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INTRODUCTION

Owing to advances in the temporal and spatial resolution in precipitation forecasting (Miller and Kim, 1997a;

Seo et al., 1999), we are approaching a time when it may be possible to anticipate landslide-producing storms

with sufficient confidence to alert agencies who can then inform those at risk to prepare. Such an approach is
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being done for flooding (e.g. Miller and Kim, 1997b; Vicente and Scofield, 1998), but the challenge for landslide

hazard warning is much greater. Potential flood areas are easily mapped, and once delineated they do not tend

to change through time as a consequence of subsequent flood events (unless changes in flood prevention

infrastructure occur). Floods take time to build up because they are the result of the integration of runoff from

widespread areas. In contrast, potential landslide locations are much harder to delineate because of the strong

influence of local controls (soil thickness, root strength, localized seepage forces and bedding or fractures) and

their threshold dependency. Furthermore, the hydrologic processes that lead to landsliding are local, and the time

scales of response to storm precipitation variations may be just minutes.

Nonetheless, there are practical and scientific reasons to attempt to build a dynamic, storm-driven landslide

model. Population pressure is leading to the expansion of development into landslide-producing environment.

This is leading to conflict, for example over land use where houses abut upland areas used for timber production

or other agricultural purposes. In part, owing to the great strides made in atmospheric sciences in recent years,

the public has become accepting of the idea that the intensity of seasonal weather, such as El Niño cycles, has

an element of predictability that permits advanced preparation of its consequences (Piechota et al., 1997;

Delecluse, 1999). The scientific opportunity here is to explore further what controls the temporal and spatial

distribution of landsliding across a landscape. Progress in understanding these controls will have clear practical

application, but will also increase our ability to model landscape evolution driven by stochastic rainfall (e.g.

Tucker and Slingerland, 1997).

Three general approaches for predicting landslide-producing storms have been taken: (1) empirical analysis

of landslide-producing storm characteristics; (2) empirical mapping of landslide locations; and (3) mechanistic

modelling of hydrology and slope stability. Here, we review each approach. The analysis of the relationship

between landsliding and precipitation has suggested the use of rainfall thresholds to forecast the timing of

abundant debris flow occurrence on a regional scale. Such an approach does not explicitly account for soil

mechanics, and relies instead on historical records of past storms and landslides. The role of antecedent rainfall

was emphasized by Campbell (1975), who observed that in southern California 10 in (254 mm) of antecedent

seasonal precipitation were needed in order to bring the colluvium mantle to field capacity, so that subsequent

storms may trigger landslide occurrence. Wieczorek (1987) observed a seasonal threshold of 280 mm at the La

Honda test site in northern California. Canuti et al. (1985) developed an index that accounts for the weighted

cumulative rainfall in the last 15 days, where the most recent data are given a higher weight. A similar approach

was adopted by Crozier (1999) and Glade et al. (2000) in their Antecedent Soil Water Status Model (ASWSM),

which accounts for the draining of early rainfall and accumulation of late precipitation. They propose an

equation to estimate the probability of landsliding as a function of daily intensity and previous water accumu-

lation. Crozier (1999) used this method over a single season (January–August 1996) and was able to identify

the period with over ten documented landslides per day, although the observed occurrence of a number of

isolated landslides was not predicted. Glade et al. (2000) applied the ASWSM over three different sites in New

Zealand, performing a separate best-fit calibration for each area. Comparison of the calibrated thresholds for the

three different areas suggests that the values are only of local significance. The selection of the number of days

relevant to an antecedent rainfall may vary with the thickness of the soil mantle to be brought near saturation

(Terlien, 1997) and its hydraulic conductivity (e.g. Iverson, 2000).

Caine (1980) collected a worldwide inventory of landslides and plotted the related rainfall conditions over an

intensity–duration (I–D) graph, finding a threshold envelope able to discriminate critical triggering conditions

for soil slips. He argued that such a relationship is reliable for durations shorter than 10 days and longer than

10 min, because (a) antecedent precipitation is not considered and (b) the intensity used is the average over the

entire storm, not the peak intensity on a sub-hourly basis, so its calculation is strongly biased for short or long

duration events.

Following the same approach, other local indexes have been proposed in order to obtain a better fit with the

regional inventories, rather than using Caine’s global data set (e.g. Nilsen and Turner, 1975; Cancelli and Nova,

1985; Larsen and Simon, 1993). Cannon and Ellen (1985) proposed a threshold for ‘abundant’ debris flow

occurrences in northern California that was adopted as a basis for a warning system in California. They used

the Campbell (1975) approach to discard any storm occurring before the required antecedent seasonal rainfall,

and a calibrated local I–D curve for the remaining storms. The rainfall intensity values were normalized by the
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mean annual precipitation (MAP) in order to account for different climatic domains (e.g. northern and southern

California). Wieczorek (1987) analysed 7 years of rainfall at a test site and found that landslide-producing storm

prediction was improved by considering the intensity that is exceeded during the entire duration used in the

I–D plot. He proposed a local threshold for storms that might trigger as little as one debris flow. Some have

found (Church and Miles, 1987; Kim et al., 1992) that specific areas may be more susceptible to landsliding

because of high antecedent rainfall whereas other areas respond to short-term rainfall characteristics regardless

of previous precipitation. The coupled antecedent rainfall intensity–duration threshold approach was used as a

basis of a warning system in the San Francisco Bay area, where an alarm was successfully issued by the US

Geological Survey in February 1986 (Keefer et al., 1987). Nevertheless, some limitations of this approach have

to be considered. The empirical nature of these rainfall threshold approaches limits their general applicability.

Wilson (1997, 2000) has proposed a procedure for the transfer to southern California of critical rainfall thresh-

olds calibrated in northern California, taking into account the difference in MAP and annual number of rainy

days (RDN) in order to explain the different pattern of debris flow response to different climates. Based on this

rationale, a California map of rainfall thresholds for debris flow triggering has been published (Wilson and

Jayko, 1997). It is not clear how well this approach will work in general, although such a procedure is necessary

to generate regional thresholds where data are lacking. More importantly, this empirical approach may be

applied to a particular region but not for any particular hillslope. Hence, if a warning is issued, because the

spatial pattern of risk is unclear, it is difficult to implement the warning. Given the extremely high variability

of risk associated with different topographic locations, without some map location of landslide potential, it

would not be possible to to warn those individuals most at risk.

Several approaches have been proposed to map the spatial pattern of landslide potential, based on

observed landslide occurrences (e.g. Carrara, 1983; Carrara et al., 1991, 1995; Van Westen, 1993; Chung

et al., 1995). These methods produce landslide hazard maps, but they do not try to predict the timing of

the events. They are based on the observation of past landslide events, and, assuming the same conditions

still hold, assign a given degree of danger to all hillslope elements that feature analogous conditions. By using

geographical information system (GIS)-based map overlay techniques it is possible to combine several maps

of different parameters (e.g. topographic gradient, land use, bedrock geology, distance from faults and stream,

etc.), with mapped landslides locations, to produce ‘unique condition’ polygons or grid cells. A rank index, used

as a proxy for landslide hazard, can be derived from combining an assigned index to each of the predictors,

or by using statistical techniques (e.g. Carrara, 1983; Carrara et al., 1991, 1995; Van Westen, 1993; Chung

et al., 1995).

The rapidly growing availability of relatively detailed digital elevation data and of computing power has led

to advances in mechanistic modelling of shallow landslide hazard, through coupling simple mechanistic slope

stability and hillslope hydrological models (e.g. Okimura and Kawatani, 1987; Dietrich et al., 1992, 1993, 1995;

Hsu, 1994; Montgomery and Dietrich, 1994; Terlien et al., 1995; Wu and Sidle, 1995; Duan, 1996; Pack et al.,

1998). For this purpose, the simplest assumption for hillslope hydrology is to treat the subsurface flow in the

steady state, and map the topographic control on the pore pressure (Dietrich et al., 1992, 1993, 1995, 2001;

Montgomery and Dietrich, 1994; Pack et al., 1998). This pore pressure is then used in the infinite slope equation

to estimate slope stability and produce maps of relative potential of shallow landsliding (e.g. Montgomery et al.,

2000; Dietrich et al., 2001). This approach permits uncalibrated predictions and has proven reasonably success-

ful, though there is a tendency for overprediction to occur, depending on the quality of topographic data (e.g.

Dietrich et al., 2001).

Dynamic hydrological models have been proposed that predict landslide potential for specific rainstorms.

Okimura and Kawatani (1987) computed subsurface runoff using a finite-difference grid scheme for slope-

parallel, saturated subsurface flow. Rainfall recharge was routed instantaneously to the saturated zone, neglecting

evapotranspiration and storage in the unsaturated zone. Assuming constant soil thickness, sites were classified

within ‘degree of danger’ categories according to the respective time needed to reach instability given a constant

rainfall of 20 mm h−1. In later applications, Okimura (1989) explicitly measured soil thickness in the field

because of its crucial role in the slope stability computations. Terlien et al. (1995) included Okimura’s soil water

balance model into a GIS-based module for mapping the probability of failure based on a regional database of

geotechnical soil parameters. They noted that a scaling factor had to be applied to the hydrological variables of
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the model (namely the storage capacity and the fraction of effective recharge reaching the saturated zone) in

order to obtain a good fit with observed data. Wu (1993) and Wu and Sidle (1995) used the TAPES-C (Moore

et al., 1988) contour-based scheme to calculate slope stability in forested catchments, incorporating the effects

of forest dynamics on root strength contribution. Time-dependent variations of root strength associated with

clearcut logging were modelled using a root decay model by Sidle (1992). Rainfall recharge was routed instan-

taneously to the saturated zone, neglecting evapotranspiration, unsaturated flow and storage in the unsaturated

zone. Subsurface saturated flow was routed using a kinematic model based on Darcy’s law. Minor spatial

variations in soil depth and hydraulic conductivity were estimated from soil maps. They applied this model

to a site in Oregon over a single landslide-producing storm (21 h), although the exact location of the slide

could not be observed. Hsu (1994) developed a hydrological model that explicitly routed saturated subsurface

flow over two layers (colluvium and bedrock) through a grid system, neglecting evapotranspiration and un-

saturated storage. Unsaturated flow travel time was accounted for, but the discrepancies between theoretical and

observed time to peak led to the incorporation of an empirical constant to accelerate the calculated response.

Soil depth was calculated using the Dietrich et al. (1995) topographically driven transport model. The hydro-

logical model was calibrated with the observed time series of mapped saturated areas, with some success,

whereas the landslide model was tested with two sets of landslides mapped for different storms at the same

catchment. Hsu (1994) did not test to see if her model successfully predicted failure occurrences over more

than one storm using the same parameter set. She concluded that a simpler, steady-state model performed as

well as a dynamic model, while having the advantage of needing fewer parameters. Duan (1996) developed

a grid-based model that simulates surface and subsurface hydrology and snowmelt to predict pore pressure

driving shallow slope stability. Unsaturated recharge rate was approximated using the Brooks and Corey (1964)

relationship for moisture-dependent hydraulic conductivity. Soil depth and properties were deduced from SCS

soil maps. Model calibration was performed using daily streamflow discharge data. Duan (1996) found that

the most important parameters in his model are soil depth, hydraulic conductivity and its decline with depth, as

well as soil and root cohesion. Friction angle and density of colluvium are also important, and their ranges are

easier to determine or estimate. Porosity and field capacity were the less critical parameters. The model was not

tested over a time series of precipitation versus landslide occurrence to check the performance of the model

prediction.

Although the above authors considered only the pore pressure deriving uniquely from the build up of a

saturated layer above a predefined critical slip surface, others (e.g. Crosta and Marchetti, 1993; Pradel and Raad,

1993; Rahardjo et al., 1995; Iverson, 2000) preferred to model the development of pore pressure as generated

by the advance of a wetting front. Pradel and Raad (1993) used the Green–Ampt infiltration scheme to predict

the critical timing of rainfall needed for the wetting front to reach the critical depth for triggering failure. Based

on such theory, Crosta (1998) parameterized different rainfall thresholds over different areas based on the

variability of soil properties. The role of transient unsaturated–saturated flow was considered explicitly by

Rahardjo et al. (1995), who included negative pore pressure and its change with depth in the infinite slope

equation. Their model predicts failure whose depth is not necessarily predefined by a discontinuity but instead

is related to the intensity and duration of rainfall. Iverson (2000) has proposed a theory to predict rainfall-

induced pore pressure in shallow soils by solving Richard’s equation under the assumption of tension-saturated

soils. Under this assumption, the model predicts the magnitude and timing of the pore pressure response to

rainstorm, using only three parameters (rainfall intensity, duration and soil hydraulic diffusivity). The assump-

tion of tension saturation narrows the applicability of Iverson’s model, as first it would be necessary to predict

which storms lead to tension saturation. Furthermore, although the incorporation of pore pressure response to

transient unsaturated flow enables the effect of high-intensity short-duration rainfall to be estimated, it requires

at least hourly precipitation data, which are not available for most sites, where calibration could be performed

over past debris flow events.

Model performance will be strongly influenced by the quality of the data used for calibration. Landslide

inventories are used by almost every landslide hazard zonation procedure, whether statistical (as direct input

to a model) or deterministic (as calibration or validation data sets). Often, the quality of such data varies

spatially, in that landslide mapping is most accurate for areas surrounding urban areas or economically import-

ant settlements, where risk perception and accuracy of mapping are greater (Glade, 1997). Moreover, the
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resolution of the data collection will influence the inventory. Mapping from aerial photographs, the most popu-

lar data acquisition technique, may hinder the recognition of failures covered by thick vegetation, and the

delineation of their boundaries may vary dramatically from operator to operator (Carrara, 1993; Carrara et al.,

1995).

Annual landslide inventories are rarely done; instead, maps are generated after major landslide events, some-

times years later. This means that there is a poor record of the relationships between landslide locations and

frequency of failure versus the precipitation record. Moreover, the underlying assumption for the use of such

data in order to predict future failures is that similar conditions to those acting at the timing of past failures apply

to future events. Land use, vegetation dynamics and effect of previous landsliding may significantly alter relative

stability. Finally, the resolution of the data used as input or predictors for the varous models is crucial. The

spatial and temporal pattern of rainfall intensity can vary substantially within a few kilometres, adding further

difficulties in extrapolating data from sparse raingauge stations. The computation of topographic variables is

extremely sensitive to the detail of the digital terrain model (DTM) and to the procedure used to extract them.

For these reasons, efforts have been made towards refining topographic data capture in order to reduce DTM-

derived uncertainty (Dietrich et al., 2001).

Here, we explore the possibility of using a coupled hydrologic–slope stability model to predict the time series

of landsliding at a given ungauged catchment, where three landslide events were mapped throughout a 50 year

record. Although single landsliding episodes have been compared before with dynamic distributed modelling

(Wu, 1993; Duan, 1996), this appears to be the first exercise dealing with repeated events within the same

catchment. This is a difficult challenge because: (a) large uncertainty is present in parameter estimation for a

coupled hydrology–slope stability model; (b) soil properties and land use may change with time; (c) the accuracy

of scars recognition and mapping is limited by the quality of topographic maps used and by the visibility from

aerial photographs; and (d) the quality of topographic and rainfall data for past years may be poor.

The innovation of using a time series at one catchment enables us to tackle the problem of ‘false positives’,

i.e. prediction of landslides when none occurred, and to evaluate whether calibration on a single landslide event

gives reliable predictions in future storms. Through extensive calibration, our model performs better than em-

pirical I–D threshold models. We conclude, however, that poor data on topography, soil properties, precipitation,

hydrological properties and changing site conditions through time will prevent models with dynamic hydrology

from producing accurate predictions of the timing and location of shallow landslides. For practical purposes,

therefore, simple rainfall thresholds coupled with simple models that predict the areas most likely to fail may

prove more useful.

THE MODEL

The model used here couples the infinite slope stability equation with a dynamic hydrological model. It repre-

sents an attempt to model the hydrological response of hillslopes with a minimum set of parameters, using

widely available data, namely 5–10 m grid digital elevation models (DEMS) and daily precipitation records. The

hydrological model follows the two-layer conceptual scheme used by Hsu (1994), but uses an organization of

storage similar to TOPMODEL (e.g. Beven and Kirkby, 1979; Beven, 2001), accounting for evapotranspiration

and unsaturated zone storage. Both the hydrologic and slope stability models require estimates of local soil

depth. Here, we predict the soil depth using the soil production and transport model of Dietrich et al. (1995),

subsequently validated by Heimsath et al. (1999). Local piezometric response is calculated by a distributed

rather than lumped model (e.g. Lamb et al., 1997, 1998); as Wigmosta and Lettenmaier (1999) pointed out, an

explicit routing scheme represents more faithfully the water table fluctuations, and allows a better calibration of

hydrological parameters.

We use daily rainfall data because of the widespread availability for the analysis of historical events. It is

known from field and laboratory observations (e.g. Johnson and Sitar, 1990; Marui et al., 1993; Reid et al., 1997;

Torres et al., 1998) and theory (e.g. Iverson, 2000) that pore pressure may respond very rapidly to intense and

short (sub-hourly) rainfall pulses. Such rainfall data are rarely available, and it is later suggested that the absence

of accurate high-resolution data on such controls as topography and geomechanical properties negates the

practical value of a model capable of routing short rainfall pulses.
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Figure 1. Elements of the coupled hydrological–slope stability model. The hydrological model accounts for evapotranspiration, unsaturated
storage and routes slope–parallel subsurface discharge in soil and bedrock, calculating water table height over the soil–bedrock interface.

This value is translated into pore-pressure in the infinite slope equation to calculate slope stability

Slope stability

The infinite slope model (e.g. Skempton and DeLory, 1957) calculates the stability of a soil prism (Figure 1)

characterized by friction angle φ′, bulk density ρs, and cohesion C′. The slip surface is coincident with the soil–

bedrock interface. Subsurface water flow is assumed to be parallel to the ground surface. The factor of safety

FS gives the ratio between resisting and driving forces:

    
FS

C D h g
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s w w
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ρ β β
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where C′ (N m−2) is the effective cohesion, g (9·81 m s−2) is the gravitational acceleration, ρs and ρw (kg m−3) are

the bulk densities of soil and water respectively, D (m) is the soil depth, hw (m) is the water table height above

the slip surface, β is the inclination of the topographic surface, the subsurface flow lines and the slip surface,

and φ′ is the effective friction angle. Equation (1) is widely used to analyse the stability of shallow soils using

DTMs (e.g. Hsu, 1994; Montgomery and Dietrich, 1994; Dietrich et al., 1995; Terlien et al., 1995; Wu and

Sidle, 1995; Duan, 1996; Pack et al., 1998; Iverson, 2000).

The time-dependent part is expressed in terms of the water table level hw, which fluctuates seasonally accord-

ing to precipitation. Whenever FS < 1, the driving forces prevail and failure occurs. The infinite slope model has

been widely employed to compute FS of shallow landslides in colluvium and in bedrock, provided the ratio

between failure length and depth is high enough (>>10).

The model assumptions (slip surface and flow lines parallel to the ground surface, null interslice forces) often

do not hold. The model is not applicable to deep-seated landslides, whose slip surface geometry may differ

substantially from a planar surface. From the hydrological point of view, flow field variations may cause

pore pressure increases that a simple slope-parallel flow model is unable to compute (Iverson, 1990). This is
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corroborated by field experiences (Wilson, 1988; Torres et al., 1998) that showed that exfiltration from bedrock

may be the primary factor of unexpected shallow failures. Moreover, this model does not take into account the

three-dimensional geometry of the landslide, neglecting lateral forces. Most important for shallow landslides

modelling in coarse colluvium is that root strength dominates the cohesion term, and where the soil is suf-

ficiently thick it acts primarily along the scar sides rather than along the slope-parallel sliding surface, as

assumed in Equation (1) (e.g. Reneau and Dietrich, 1987; Schmidt et al., 2001). In order to minimize the number

of parameters in the model, we elect not to address these issues here.

Hydrology

The model developed in this work adopts the storage organization (Figures 1 and 2) commonly used by many

TOPMODEL applications (e.g. Beven, 2001). This consists of: a Root Zone, where evapotranspiration occurs;

an Unsaturated Zone, located between ground surface and the water table; a Saturated Zone, bounded by the

piezometric surface. We assume that there is always a saturated zone, located above or below the soil–bedrock

interface. Horton overland flow is not considered in this application, and runoff resulting from saturated overland

flow is simply removed instantaneously from the catchment, and ignored in further computations.

When the rainfall infiltrates the ground surface, it is stored into the Root Zone. This reservoir has a maximum

capacity Srm, and whenever the actual water content Sr exceeds the maximum capacity, the excess is transferred

directly to the Unsaturated Zone. Such flow increases the water content Su of the Unsaturated Zone. The flow

rate Qu in this zone is assumed vertical. As Su approaches the maximum unsaturated storage Sum, hydraulic

conductivity approaches the saturated hydraulic conductivity. At each site, maximum unsaturated storage Sum is

given by the product of soil depth D and effective porosity nwet. The Saturated Zone receives water from the

above Unsaturated Zone (Qu) and from the lateral transport from upslope neighbours, and in turn delivers water

to the downslope Saturated Zone. Saturated flow is computed through Darcy’s law. The model uses the same

distinction adopted by Hsu (1994) and Dietrich et al. (1995), where a two-layer model was adopted to describe

subsurface flow, assuming exponential decay of hydraulic conductivity with depth in the soil and in the bedrock

layer, as suggested by field observations (e.g. Wilson, 1988; Montgomery, 1991; Torres et al., 1998). The

importance of bedrock flow for the initiation of shallow landslides has been observed and documented by several

authors (e.g. Wilson, 1988; Montgomery, 1991; Dietrich et al., 1995; Torres et al., 1998). Evapotranspiration

has been neglected by some event-based hydrological models (e.g. Hsu, 1994; Wu and Sidle, 1995), on the

grounds that, during a single storm event, it is unlikely to be a major controlling factor. Because the model we

used is intended to work on a continuous record of years, however, the effect of evapotranspiration is included

here. We used the most economical approximation of evapotranspiration, an empirical formula proposed by

Hamon (1961), and used, amongst others, by Wolock (1993) in a TOPMODEL implementation. Other, more

precise, methods can be used (e.g. Penman, 1948; Monteith, 1965), at the cost adding more parameters and

uncertainty to the model. Hamon’s (1961) approximation yields a rough daily estimate of potential

evapotranspiration given the least number of parameters (daily temperature and latitude of the site). Following

Haith and Shoemaker (1987), the Hamon (1961) estimate of potential evapotranspiration is
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H e
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t s
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(  . )

0 0021

273 2
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where Ep (m day−1) is the potential evapotranspiration, Tt (°C) is the temperature at day t, Ht is the average

number of daylight hours per day during the month in which day t falls, and es (kPa) is the saturated vapour

pressure at temperature T. Ht can be calculated by using the maximum number of daylight hours Nt:

    
Nt

s= 
24ω

π
(3)

where ωs is the sunset hour angle of day t calculated as

ωs = arccos(−tan φ tan δ) (4)
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Figure 2. Flow diagram showing the steps used by the model in hydrological and slope stability calculation. The terms are defined in the text
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φ is the latitude of the site and δ is the solar declination on day J (Julian day) of the year, expressed as

δ = 0·4093 sin

    

2

365
1 405

π
J   .−







(5)

es is computed as a function of temperature T:

es(T) = 0·6108 e(17·27T/273·3+T) (6)

Thus, given the latitude of the site and the average temperature, it is possible to formulate a rough estimate

of potential evapotranspiration.

Actual evapotranspiraton Ea (m day−1) is considered only within the root zone, and is computed as a fraction

of potential evapotranspiration given by Equation (2), according to the ratio of actual versus maximum storage

in the root zone (e.g. Beven, 2001).

    
E E

S

S
a p

r

rm

  = (7)

where Sr and Srm (m) are the actual and maximum water storage in the root zone. When water content exceeds

the maximum storage in the root zone, the excess qr is transferred to the unsaturated zone, where evapotranspiration

is neglected.

Unsaturated flux per unit surface qu (m day−1) is assumed vertical and is approximated using a simple Brooks

and Corey (1964) type equation:

    

q Ku

n

  
  

  
=

−
−







θ θ
θ θ

min

max min

(8)

where K (m day−1) is the saturated hydraulic conductivity, θ, θmin and θmax (m) are respectively the actual,

minimum and maximum soil water contents in the unsaturated zone, and n is the pore distribution coefficient

dependent on the spatial arrangement of grains, variable between 3·7 and 5·5 for most loamy/sandy soils

according to Parlange et al. (1999). This simplified equation has been used by Grayson et al. (1992).

The term (θ − θmin) appearing in Equation (8) is the actual unsaturated storage Su, whereas (θmax − θmin) is the

maximum unsaturated storage Sum. When the soil column is saturated, Sum = Su and unsaturated flux equals

saturated flux. No time lag is accounted for in the travel time between ground surface and water table. The same

scheme is adopted by, among others, Wolock (1993) and Beven (2001). Total vertical recharge rate to the

saturated zone Qu (m
3 day−1) is then given by

Qu = quA (9)

where A (m2) is the area of the elementary spatial unit, in this case a grid cell.

Saturated flow is computed according to Darcy’s law, assuming slope-parallel flow, when subsurface dis-

charge per unit width qb (m2 day−1) is given by

qb = Te sin β (10)

where β is the hydraulic gradient. Te (m2 day−1) represents the integration of hydraulic saturated conductivity

over the entire saturated thickness.

      
T K dze

D

  =
∞
� (11)
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where z (m) is depth measured vertically downward and D (m) is vertical soil depth and coincides with the depth

of the critical soil slip. In a two-layer conceptual scheme (Figure 1), Equation (11) has to be calculated for both

the soil mantle and the bedrock.

The model assumes exponential decay with depth of hydraulic conductivity for both the colluvium and the

bedrock, at different rates.

K = K1 e−f1zs (12)

K = K2 e−f2zb (13)

In these equations, depth and hydraulic conductivities are measured separately for the two layers.

K (m day−1) is the saturated hydraulic conductivity of soil in Equation (12) and of bedrock in Equation (13);

f1 and f2 (m−1) are the decline rates of hydraulic conductivity in soil and bedrock respectively; zs (m) is the

depth measured from the ground surface within the soil layer, and zb (m) is the depth measured from the

bedrock–soil interface.

Combining Equation (11) with Equations (12) and (13) yields

      
T K e dz K e dze

h

D
f z

h

f zs b    = +− −
∞

� �
1

1

2

2

1 2 (14)

where h1 and h2 (m) are the depths of water table from the ground surface and the soil–bedrock interface

respectively.

Integrating Equation (14) yields
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f
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If the water table is above the soil–bedrock interface, then h2 = 0 and Equation (15) becomes

    
T

K

f
e e

K

f
e
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1 1 1 (16)

If the water table is coincident or below the soil–bedrock interface, then h1 = D and Equation (15) becomes

    
T

K

f
ee

f h= − 2

2

2 2 (17)

Subsurface flow qb can be calculated from Equation (10) and it is routed kinematically to transfer water

downslope. Groundwater outflow discharge Qb (m
3 day−1) is computed as

Qb = qbb (18)

where b (m) is the contour width of the flow element. At each time step, Qb is delivered in proportion to the

topographic gradient (Freeman, 1991; Quinn et al., 1991; Dietrich et al., 1995) to downslope neighbours, which

therefore receive at the next time step some amount of subsurface inflow from upslope cells. Multiple flow

direction apportioning has some shortcomings, such as dispersivity (Costa Cabral and Burges, 1994), but it

reduces the sensitivity to grid orientation, compared with single flow direction algorithms (Freeman, 1991;

Quinn et al., 1991; Dietrich et al., 1995). The outflow supply becomes available to the neighbours at the

subsequent time step. At every time step t, water table elevation hw (m) is computed as

hw(t) = hw(t − 1) +
  

∆Q t Q t

A

b u( )  ( )+
(19)
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where ∆Qb is the difference between inflow from upslope cells and downslope outflow, and A is the area of the

elementary unit. Equation (19) is then substituted into Equation (1) to calculate the factor of safety.

Soil thickness

The thickness of soil mantle, which in our model coincides with the failure depth, is a critical parameter in

both slope stability and hydrological models (Hsu, 1994; Dietrich et al., 1995; Terlien et al., 1995; Wu and

Sidle, 1995; Duan, 1996; Iverson, 2000). Soil thickness is rarely mapped, and it is a practical impossibility to

do so over a large catchment. To estimate soil depth D we used the model proposed by Dietrich et al. (1995),

which explicitly relates it to topographic curvature:

      
ρ ∂

∂
ρ ∂

∂
ρs r s s

D

t

e

t
     = − − ∇ ⋅ q (20)

where ρs and ρr (kg m−3) are the densities of colluvium and bedrock respectively; ∂e /∂t (cm year−1) is the rate

of soil production.

The simplest transport law for hillslope sediment transport qs, adopted by Dietrich et al. (1995), assumes flux

varies linearly with local slope ∇z:

qs = −Kt∇z (21)

where Kt (cm2 year−1) is a soil transport coefficient. Soil production is approximated as exponentially declining

with depth H (m).

    
− = −∂

∂
αe

t
P e D  0 (22)

according to empirical findings by Heimsath et al. (1997, 1999), where P0 (cm year−1) is the maximum (surface)

soil production and α represents exponential decline with depth.

An initial soil depth of 30 cm was assumed and the model was run for 15 000 years, as in Dietrich et al.

(1995). The parameter values of the soil model were estimated within the range found by Heimsath et al. (1997,

1999): P0 = 0·02 cm year−1; α = 0·05 m−1; Kt = 0·019 cm2 year−1.

APPLICATION OF THE MODEL

Site description

We calibrated and tested the coupled slope stability–hydrological model over a 1·7 km2 wide catchment

located near the city of El Granada, in the Montara Mountains (San Mateo County, California; Figure 3). Two

debris flow events were mapped by Wentworth (1986) from aerial photographic interpretation combined with

some field mapping (Figure 4). The first occurred during the 15–28 December 1955 storm, which caused

numerous landslides over the entire Pacific Coast, reaching its peak in the Bay area on 22–23 December

(Division of Water Resources, 1956). The second event was caused by the 3–5 January 1982 storm that caused

in the San Francisco Bay area US$66 million in damages and the death of 25 people (Ellen and Wieczorek,

1988). It was highly localized and brief compared with the 1955 event. In addition, we observed a time series

of detailed aerial photographs (1 : 24 000) from 1953 though 1998, which show that: (a) in 1955, 80% of the

hollows failed; (b) no previous scars were evident from the 1953 aerial photographs, an observation confirmed

by two aerial photographs taken in 1931 and 1946 reported as illustrations in Van der Werf (1992); (c) a third

landsliding episode was visible from the aerial photograph taken in September 1998, which we estimate to be

caused by the storm of 31 January 1997–3 February 1998. No other landslides appear to have occurred within

the time window covered by the aerial photographs (1953–98). Many of the 1955 scars still look fresh, unrecovered,

over the entire time series of the photographs.
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Figure 3. Location map of the test area located near El Granada (San Mateo County, California)

Bedrock lithology mainly consists of Montara Diorite, a medium to coarse granitic rock, composed of quartz

diorite with some granodiorite, apatite and pegmatite (Wentworth, 1986). The rock is pervasively jointed and

fractured and the topmost 3 to 30 m is moderately weathered to locally disintegrated in granular soil (Wentworth,

1986). The soil mainly comprises Miramar coarse sandy loam (Wagner and Nelson, 1961). Estimated hydraulic

conductivities of the surface soil are classified by Wagner and Nelson (1961) as ‘rapid and relatively low’ which,
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according to the soil survey manual, are comparable to (3·5–7·1) × 10−5 m s−1 and (1·4–5·6) × 10−6 m s−1. No data

are available on the distribution of soil thickness.

Current vegetation consists mostly of shrubs and grasslands, with isolated patches of eucalyptus in the

flatlands that extend from the fan area. According to Van der Werf (1992), before 1769, seasonal burning by

Native Americans of native hillside vegetation limited the growth to bunch grasses and fire-resistant shrubs.

Between 1769 and 1915 grazing was introduced by the Spanish and this was continued mostly by Mexican

communities and the early American settlers. Grazing was limited in 1910–20, when the city of El Granada filed

several complaints against local citizens for uncontrolled grazing. Since then, the vegetation of these hillsides

has remained in its natural state.

The climate of the region is Mediterranean, with dry mild summers and moist cold winters. Average daily

temperature ranges between 10 and 15 °C. Mean annual rainfall is 750 mm, 80% of which occurs between

November and March (Wagner and Nelson, 1961). A preliminary comparison of the rainfall record versus the

landslide history suggests a discrepancy between the rainfall and landslide time series, as there is poor corre-

spondence between the most important debris flow pulse and the severity of rainfall. In order to explore this

issue, we performed a rainfall analysis.

Rainfall analysis

We analysed the rainfall I–D pattern of the available rainfall records and compared it with the landslide-

producing threshold curves proposed by various research groups. The closest daily record is at the Half Moon

Bay station and the closest hourly record is from the San Francisco International Airport station (Figure 3). We

calculated I–D envelopes using the procedure outlined in Chow et al. (1988), (e.g. intensity is averaged over a

given duration time window). The daily I–D curves (Figure 5) were derived from the analysis of the entire hydro-

logical year for every season. For durations longer than 1 day, the intensities of non-landslide-producing storms

do not differ significantly from the 1982 storm event. Hence, we cannot derive any significant envelope for dis-

criminating events likely to trigger debris flows. The I–D curves calculated on a hourly basis for the most severe

storms between 1955 and 2000 (Figure 6) are compared with the thresholds suggested by Caine (1980), Cannon and

Ellen (1985), Wieczorek (1987) (the latter two as reported in Keefer et al. (1987) and Wilson and Jayko (1997).

Only the 1982 event stands out relative to the rest. Generally, the 1955 storm is high, but not in exceededance

of some other storms that did not provoke landslides. The 1998 storm was exceeded by many previous non-slide-

producing events. Surprisingly, the best performing empirical threshold curve was the one proposed by Caine

(1980), the only one of the above curves that was not based on local data. Nonetheless, the Caine curve model

incorrectly predicts three events that did not produce landslides and misses two that did. None of the other curves

performed well. This failure may be in part due to the inapplicability of the precipitation data to the local

catchment where landslides occurred. Below, we explore whether a mechanistic model might be more successful

in identifying landslide-producing storms.

Model parameterization and calibration

The model was run using a 5 m spaced grid derived by Hsu (1994) from the US Geological Survey contour

maps. We used as climatic record the daily time series from 1950 to 1999 of precipitation (Figure 4) and

temperature (to estimate evapotranspiration) recorded at the Half Moon Bay station (available from the National

Climatic Data Center). The isohietal maps provided by Monteverdi (1984) for several rainstorms suggest that

these values can be reasonably used for the El Granada catchment without any transformation.

Table I summarizes the parameter values (and their sources) used in the model. Only four hydrological

parameters were allowed to vary; all other parameters were fixed. Colluvium effective porosity (needed for

converting saturated water content into piezometric head) was kept constant at n = 0·2, as were the geotechnical

parameters (ρs = 1800 kg m−3, C = 1000 N m−2 and φ′ = 40°), based on Hsu (1994) and Dietrich et al. (1995).

Maximum root storage Srm was set to 0·005 m. The four hydrological parameters calibrated to optimize model

performance were K1, K2, f1 and f2. These are the saturated conductivities of the soil and bedrock and their

corresponding declines with depth.

A landslide was considered as correctly predicted if the model predicted any of its cells as unstable (FS ≤ 1)

(e.g. Montgomery and Dietrich, 1994; Dietrich et al., 1995, 2001). We define an optimal model as one that is
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Figure 5. Intensity–duration graph based on daily rainfall data from the Half Moon Bay station. For the sake of clarity, minor storms were
not plotted. The hydrological years featuring landslides are plotted with heavier lines. No clear envelope can be drawn that discriminates

landslide-producing sequences from the others

Figure 6. Intensity–duration graph based on hourly rainfall from the San Francisco International Airport station. The data are compared with
Caine (1980), Cannon and Ellen (1985), Wieczorek (1987) and Wilson and Jayko (1997). The Caine curve discriminates correctly for 1982,

whereas the others perform poorly
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Table I. Parameter ranges used for model calibrationsa

Process Parameter Value/range Source

Rainfall P (mm) Variable Half Moon Bay station (daily)

Topography βββββ Steepest descent DEM from Hsu (1994)
b (m) 5 m DEM from Hsu (1994)
A (m2) Slope-proportional DEM from Hsu (1994)

partitioning

Evapotranspiration T (°C) Variable Half Moon Bay station (daily)

Subsurface hydrology K1 (m day−1) 10–100 Calibrated
K2 (m day−1) 2–5 Calibrated
f1 0·5–20 Calibrated
f2 1·4–10 Calibrated
nwet 0·2
D (m) Spatially variable Soil depth module
Srm 0·005
Sum Spatially variable D*nwet

Soil depth Kt (cm2 year−1) 50
P0 (cm2 year−1) 0·019 Dietrich et al. (1995)
α 0·05
t (year) 15 000

Shear strength C′ (Pa) 1000
ρs (kg m−3) 1800
φ′ (°) 40

a Parameters in bold are distributed throughout the grid.

Figure 7. Performance in terms of predicted landslides and predicted unstable area in the overall catchment. The best performance was shown
by 20 simulations, which were able to capture about 85% of the landslides while classifying as unstable about 15% of the catchment area

able to identify the maximum number of landslides with the minimal percentage of land predicted to fail. For

instance, a model that predicts 100% of the mapped failures but which also classifies 80% of the catchment area

as unstable obviously has no discriminant power.

The model consistently overpredicted slope instability, with some cells being classed as unstable every year.

Two steps were taken to deal with this. First, based on field evidences of channel occurrence, we estimated that

all cells draining areas greater than 1000 m2 were channels. These cells were not used in the landslide analysis.

Second, we used a cutoff that a storm has to predict more than 11% of the catchment to be unstable in order
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Figure 8. Effect of the ratios K1/f1, K1/K2 and f2/f1 on the predicted landslides. The K1/K2 and f1/f2 plots refer only to a subset of the simula-
tion, keeping the other ratio constant. Best performance occurs for K1/f1 < 10 m day−1. As the contrast in hydraulic conductivity K1/K2

decreases, the model performs better. Similar results are observed for the contrast in the rate of conductivity decline with depth, f2/ f1

to be considered a landslide-producing storm. We infer that the background 11% value is largely associated with

poor topography and unknown local geomechanical and hydrological properties. The choice of 11% represents

an arbitrary threshold, which may not be applicable elsewhere.

Calibration of the four hydrological parameters was first accomplished for the December 1955 event using 90

different combinations of K1, K2, f1 and f2. Those values were selected based on the values reported by Wagner

and Nelson (1961) and used by Hsu (1994). Some 20 of these simulations were able to predict 84–86% of the

actual mapped landslides successfull, while predicting 14–16% of the catchment as unstable (Figure 7). The date

of the peak response calculated in such runs, however, varied by as much as 4 days. The results were sensitive

to the ratios K1/f1, K1/K2 and f2/f1 (Figure 8). The ratio K1/f1 scales with the transmissivity of the colluvium layer
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Figure 9. Examples of simulations run for the 1980–86 period, using the parameters set calibrated for the December 1955 landslide-
triggering storm. Simulation no. 40 has the best predictive power and was selected as the best parameter set

(actually, in a single-layer model, it is equal to the transmissivity). The simulations gave the best results for

values of K1/f1 ranging between 2 and 10 m2 day−1, consistent with the values estimated from Wagner and Nelson

(1961). The larger the differences between the soil saturated conductivity and bedrock conductivity, the poorer

were the results. The same applies to the ratio f2/f1 between the rates of conductivity decline within the two layers.

These 20 parameter sets were then used to run 20 simulations (Figure 9) in another time window (1980–86)

that contained three critical storms: 3–5 January 1982, 24 February–3 March 1983 and February 1986, of which

only the first caused debris flows. In particular, the February 1986 storm was similar to the 1955 (Figure 10),

while having an even greater antecedent cumulative seasonal rainfall (221 mm for 19 December 1955 versus

Figure 10. Comparison of the December 1955 and March 1986 storm characteristics. Despite the similarity, the 1986 storm did not trigger
any debris flow in the test area
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Figure 11. Model instability prediction calculated over the 1950–98 period using the best-fit simulation. Using an empirical threshold of
11% for the catchment, the model predicts the three landslide-producing events (1955, 1982 and 1998), but also predicts two false positives

(1951–52 and 1962–63)

582 mm for 13 February 1986, computed from 1 July). Nonetheless, the 1986 event had no significant effect

on hillslope stability at the study site.

The parameter combination K1 = 50 m day−1, K2 = 2 m day−1, f1 = 2 m−1, and f 2 = 2 m−1 (simulation no. 40 in

Figure 9) was the one that detected better the debris flow event of January 1982 (e.g. the only peak exceed-

ing the 11% threshold) and was chosen as ‘best-fit’; other simulations incorrectly predicted other landslide

events. When applied to the entire time series, the best-fit model predicted correctly all three landslide events

(Figure 11), based on the criterion of the threshold of 11% of the catchment area as unstable. The corresponding

maps of the factor of safety are shown in Figure 12. Two storms, however, are predicted to produce landslides,

but they did not. Furthermore, the spatial extent of landsliding was overpredicted for all three events. Below,

we discuss the possible explanations of this incorrect prediction.

DISCUSSION

Our calibrated mechanistic model performed better than the simple threshold-based I–D curves. Using the

conditions that predicted instability area must exceed 11% of the catchment to be a landslide-producing storm,

only two storms (in the 1951–52 and 1962–63 hydrological years) are incorrectly predicted as unstable. We

explore four basic causes for incorrectly predicting landslides-producing storms once a calibration has occurred.

These are potential sources of error for any model.

Daily rainfall data is too coarse a time scale

It has been observed (e.g. Johnson and Sitar, 1990; Reid et al., 1997; Montgomery et al., 1997; Torres et al.

1998) that a significant fraction of hillslope failures is often related to short (≤1 h) and intense rainfall rather

than daily-averaged precipitation. To explore whether our model would produce significantly different outcomes

based on hourly rainfall, we generated some simulations using six synthetic hourly hietographs (Figure 13). Every

synthetic hietograph has the same daily totals as the 4 and 5 January 1982 observed daily rainfall, but different

hourly distributions, ranging from constant moderate rainfall to high rainfall peaks. The hietograph no. 6 was

normalized from the representative rainfall curve for northern California (Ellen and Wieczorek, 1988). We com-

pared the pore pressure responses calculated from the different storm inputs, for convergent areas (hollows) and

divergent areas (noses). The timing of the calculated peak pore pressure differed from 4 to 9 h. The magnitude

of the calculated peak pore pressure response differed little among the six runs. Hence, although the difference

in hourly rainfall sequence changed slightly the timing of the peak pore pressure response, it had little effect on

its magnitude, and the use of hourly rainfall record would not improve substantially the performance of this model.

It is possible that a model that can route pressure waves generated for short rainfall bursts (e.g. Marui et al., 1993;

Torres et al., 1998; Iverson, 2000) would provide a more reliable prediction. If such a model were to be developed
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Figure 12. Map of the factor of safety calculated by the best-fit model at the peak of the three debris-flow-producing storms

that could run continuously at high-resolution time intervals (minutes), it would currently outstrip computational

capabilities when applied as a forecasting tool to large areas. Furthermore, we currently lack either the obser-

vational data or theoretical prediction at suffiently high spatial and temporal resolution to use such a model.

Rainfall data are not sufficiently local

The closest rainfall record is located about 6 km south of the catchment. Although the hietograph map by

Monteverdi (1984) suggests that, on average, the rainfall record from the Half Moon Bay station may be a

reasonable proxy, it is likely to deviate more if the short-term input becomes the primary triggering factor. This

issue is even more important for the use of the hourly time series from the San Francisco International Airport.

Previous landslides create legacy effects

The number of observed landslides in our study site decreased in time regardless of the rainfall pattern, and

the greatest number of debris flows events did not correspond to the most intense storms (Figure 4). This pattern

suggests that there may be a legacy effect, i.e. the interval between potential landslide-producing storms is short

relative to the recovery time of the most susceptible areas to instability. A shallow landslide typically removes
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Figure 13. Synthetic hourly rainfall input to the model for the 3–5 January 1982 event, and the calculated piezometric response at a
topographically convergent site (hollow) and at a divergent site (nose). At each site the magnitude of the peak response is nearly identical,

and the delay between maximum peaks ranges between 4 and 9 hours
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the entire soil mantle and creates a well-drained scar into the hillslope. Stratigraphic studies (Dietrich and

Dunne, 1978; Dietrich et al., 1982), colluvium dating (Reneau and Dietrich, 1986, 1987) and modelling (Reneau,

1988; Hsu, 1994; Dietrich et al., 1995) indicate that recovery time of soil thickness in typical failure sites in

California is thousands of years. Crozier and Preston (1999) argued for a legacy effect in describing the landslide

response in New Zealand to recent deforestation. They argued that landslides reduce available soil thickness and

leave a strong mass less susceptible to failure. Hence, initial massive instability resulting from deforestation is

followed by a drop in landslide frequency for a given storm. They proposed, however, that, in time, sufficient

site recovery would lead to renewed site susceptibility to failure. They specifically argued, therefore, that rainfall

thresholds would change through time due to the legacy effect. When this is the case, it is worth emphasizing

that this problem will be overlooked by any model calibrated over too short a time period; for example, in our

data set, the rainfall threshold approach works reasonably well for the 1970–86 period, but the inclusion of the

precipitation and landslides occurring in the 1950–70 period shows a poor performance that we argue could be

explained by the legacy effect.

Accounting for the legacy effect, while clearly important, did not, however, improve our modelling results.

The total area that actually fails relative to that predicted as unstable over the catchment is very small. Conse-

quently, eliminating the cells that failed in 1955 from the simulation of the following years did not eliminate

the problem of predicted ‘false positives’. This suggests that a dominant control on model performance may be

the inaccurate topography and soil properties.

Topography and soil properties are inaccurate

In steep terrain, 5–10 m grid DEMs derived from the US Geological Survey 7·5′ maps will generally under-

estimate the local slope steepness that controls shallow landsliding. Although the topographic data captured part

of the valley network and the hollows from which landslides most commonly occurred (Figure 14), many

fine-scale valleys are missing, especially the first-order channels that are common sources of debris flows.

Furthermore, the data generally do not capture local steps and gentle areas, nor the strength of the topographic

Figure 14. Comparison of the actual valley network and at derived from the DEM using a drainage area threshold (1000 m2)
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convergence and divergence, which influence pore pressure build up due to shallow subsurface flow (e.g.

Dietrich et al., 2001). Even with high-resolution data derived from airborne laser altimetry, there is a tendency

for topographically driven landslide models to overpredict actual landslide occurrence (Dietrich et al., 2001).

CONCLUSIONS

The increasing ability to forecast precipitation accurately and the increasing resolution of digital elevation data

invites modelling efforts that can be used to predict the timing and location of shallow landslide hazards. In order

to be of practical value, such models must not miss significant landslide-producing storms, but neither should they

frequently overpredict landslide occurrence. The current practice of using I–D thresholds to identify landslide-

producing storms can be made more useful if they are coupled with mechanistic models that are spatially explicit

in identifying areas of high risk.

Our result suggests that landslide prediction based on dynamic hydrological models may perform significantly

better than simple I–D approaches, but they require considerable calibration. It is likely that calibration para-

meters will be relatively site specific. The paucity of time series data on landslide occurrence will make it dif-

ficult to calibrate such models over large areas. Furthermore, poor topography, precipitation, soil properties

data and legacy effects of previous landslides will inhibit model performance. The I–D model coupled with a

tool for delineating the spatial extent of landslide risk can be easily assembled but will have a large uncertainty.

Further improvements in high-resolution precipitation and topographic data, coupled with the inventory of

landslides time series data, should allow more mechanistic models to be calibrated and provide significant

improvement in hazard forecasting (e.g. Dietrich et al., 2001).

We developed a dynamic distributed hydrological–slope stability model based on daily rainfall and topographic

data. The application of the model showed that the calibration yields both spatial and temporal overprediction

of instability.

By selecting an appropriate threshold for predicted unstable area, however, the model performed better than

previous rainfall-based models in discriminating landslide-producing storms. The overprediction of instability

could not be removed by the use of hourly rainfall data and neither did such data affect significantly the worst-

case response calculated by our model, probably because the advective mechanism used for water recharge is

too slow to reproduce correctly the pore-pressure response to high-intensity rainfall; this is true for most past

and present distributed hillslope hydrology and slope stability models.

The incorporation of the ‘legacy effect’ was not able to remove the overprediction either. The removal of soil

mantle from the scars was incorporated in the model, but the results for the 1982 and 1986 events were not

significantly different.

The above approach will give better results by improving the quality and detail of topographic data, rainfall

data and ground characterization, especially in terms of soil thickness. The wider availability of hourly rainfall

data will allow calibration of more sophisticated physical models for the unsaturated pore pressure response (e.g.

Iverson 2000).

In terms of practical applications, however, we believe that overprediction of instability will be inevitable for

a warning system operating in ungauged catchments, and further efforts should be made to increase the aware-

ness of this in the communities subject to debris flow hazard.
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